
613 

Third-order blast wave theory and its application 
to hypersonic flow past blunt-nosed cylinders 

By R. J. SWIGART 
Lockheed Aircraft Corporation, Missiles and Space Division, Pa10 Alto, California 

(Received 14 July 1960) 

The inviscid flow behind a cylindrical blast wave and its analogy with hypersonic 
flow past blunt-nosed cylinders is considered. Sakurai (1953, 1954) obtained a 
solution for the flow field behind a propagating blast wave by expanding the 
flow variables in power series of 1/M2, where M is the blast wave Mach number, 
and determining the coefficients of the first two terms in the series. Here the work 
is extended to include third-order terms. Third-order theory is shown to improve 
the prediction of shock wave shapes and surface pressure distributions on 
hemisphere-cylinder configurations at M, = 7.7 and 17.18. 

1. Introduction 
The purpose of this development is to extend Sakurai’s solution (1953, 1954) 

for the unsteady flow field behind a propagating cylindrical blast wave to 
improve its accuracy at later times after the initial explosion. The case 
treated is that of a blast wave produced by an infinite line charge of constant 
energy per unit length. 

Blast wave theory as developed by Taylor (1950) for spherical waves, Lin 
(1954) for cylindrical waves, and Sedov (1946) for spherical, cylindrical, and 
plane waves is applicable only when the blast wave is strong, i.e. for 
* (y-  1 ) M 2  1. Mel’nikova (1954) and Sakurai improved these solutions by 

expanding the flow variables in power series in 1/M2 of the form 2 fcn)(r/R) M-2n 

where the f(*) are functions only of radial distance r non-dimensionalized with 
respect to the shock radius R as illustrated in figure 1. Sakurai obtained the 
series coefficients for n = 0, 1. The following development extends his work by 
obtaining the coefficients for n = 2, thus determining the third-order terms in the 
series expansions. 

The analogy between steady hypersonic flow about a slender body with a 
corresponding unsteady flow in one less space dimension was first pointed out by 
Hayes (1947). This analogy applies between the constant energy flow behind a 
propagating cylindrical blast wave and the steady flow between the shock and 
outer edge of the entropy layer (Sychev 1960) on a blunt-nosed cylinder configura- 
tion. 

The analogy may be illustrated as follows. Consider the blast wave produced 
by the explosion in a uniform atmosphere of an infinite line charge having 
finite constant energy per unit length. At some time after the explosion, the 

a 

n = O  
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cylindrical wave will have a radius R and a propagation velocity U = dR/dt. 
Since the phenomena possesses cylindrical symmetry, the flow in all meridian 
planes is identical and is characterized by a certain radial velocity, pressure, 
and density field. Further, consider the flow about a blunt-nosed slender body 
in high-speed flight (figure 2). For any transverse plane aft of the nose where 
the horizontal velocity component is approximately U,, the following relation 
holds 

dR U dRdt 1dR 
dz c at a2 c at , 

M - = -- 

FIUURE 1. Cylindrical blast wave phenomena. 

FIUUFCE 2. Flow about a blunt-nosed cylinder in steady flight. 

where c is the speed of sound in the undisturbed stream. dR/dt, however, is 
analogous to the blast wave propagation velocity. Hence, ( 1 )  may be written as 

dR U 
“ d z  c 

M - = - = M M .  

Thus, if the radial velocity, pressure, and density behind the propagating blast 
wave are known functions of M and r/R, they are known through the above 
analogy in any given transverse plane aft of the nose of a blunt body whose 
flight Mach number and shock shape are known. 

2. Mathematical analysis 

mechanics in terms of the independent variables 
Sakurai (1953, 1954) wrote the usual conservation equations of fluid 
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and substituted into the differential equations and shock boundary conditions 
the following assumed power series expansions for particle velocity, pressure, and 

(4) 
density. 

(5) 

(6) 

u = Ul f" ( z )  +f"'(z) y +f("(z> y2 + . ..I, 

p = pm [h(O)(z) +I&')(%) y + h @ ) ( ~ )  y2 + . . .I. 
= pmy-1[8(0)(z) + 8("(z) y + $"(%) y2 + *-*I ,  
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TABLE 1. Numerical solutions for q P ,  x[*) 

p) 

0.4992 
- 8.0613 
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- 3.6965 
- 1.3643 
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26 

- 
- 
- 
- 

10.75 - 
- 
- 
- 

The equation of like powers of y then results in an infinite number of sets of 
equations for the series coefficients which may be solved successively. Further 
substitution of (4), (5), and (6) into the mathematical expression of equality of 
energy per unit length of the flow contained within the cylindrical shock and 
that of the original line charge results in the following expression for R(y) 

y(Ro/R)2 = J,(l+h,y+*A,y2+ ...), (7) 
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where Rt = E/pm, E being the energy per unit length of the original line charge, 
and J, and the hi's are constants. 

The object of this work is to determinefc", g@), h@), and A, by solution of the 
set of equations resulting from equation of like powers of y2. We define 

and further, since qP), F2), and x(,) depend on A,, which cannot be obtained until 
qW, qH2), and 2,) are known, we let 

5 
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FIQT~RE 3. Density distribution comparison; M = 3, y = 1.4. 

This leads, after some manipulation, to two pairs of coupled linear ordinary 
first-order differential equations for #), @:), and #), $k2) whose coefficients 
derive from the previous approximations, together with appropriate boundary 
conditions. For details see Swigart (1960). These equations were integrated on a, 
Rand 1103A computer utilizing the Runge-Kutta method. The results yield 
A, = 2.7373. The values of #2), @2), and $2) then determined are given in table 1. 

3. Blast wave results 
Non-dimensionalized radial velocity, pressure, and density accurate to the 

third-order were obtained using equations (4)-(6) and the first- and second- 
order results given in Sakurai (1953, 1954). A typical result is given in figure 3 
in which density distributions given by second- and third-order theory at a 
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shock Mach number of 3 are compared. Note that the physically incorrect 
maximum in the second-order curve is corrected by the third-order term. 
Further results indicate that the third-order term in the density expansion 
is negligible for M above 5,  whereas terms higher than third-order may not be 
neglected for M less than 3. Corresponding results hold for radial velocity and 
pressure. 

4. Blunt-body shock-wave shapes and surface-pressure distributions 
As previously mentioned, an analogy exists between the constant-energy 

non-steady similar flow behind the blast wave and steady hypersonic flow about 
a blunt-nosed cylinder at  zero incidence. For this case, the energy per unit 
length of the original line charge in the blast wave problem is identified with the 
nose drag, D ,  of the axisymmetric body. 

Equation (7) is a differential equation relating the speed of the shock front 
U = dR/dt with time t. Solution of this equation yields R = R ( t ;  E ) .  Substitution 
of z /U,  for t and (D/2npm)t for R,, yields an equation for the shock shape about a 
blunt-nosed slender body as a function of axial distance from the body nose and 
flight Mach number. The resulting third-order equation is 

where C, is the nose drag coefficient. Note that (14) is more general than the 
corresponding second-order equation reported by Lees & Kubota (1957) in 
that it depends parametrically on body nose-drag coefficient. Lees & Kubota’s 
equation 

= 0*78(:)*(1+--) 1.62 z 
d M2, d 

has embodied in its derivation a nose-drag coefficient for a hemisphere at  
& = 7.7 as determined by modified Newtonian theory 

where p ,  is the pressure at  the stagnation point. 
For all Mach numbers above and slightly below 7-7, the neglect of the nose-drag 

variation with Mach number is justifiable. For nose geometries that differ con- 
siderably from a hemisphere, a value of C, corresponding to the geometry should 
be used rather than (16). When the value for C, obtained using (16) at M, = 7.7 
is introduced in (la), the first two terms are identically equation (15). 

A comparison with experimental data of the shock-wave shapes obtained using 
two and three terms of (14) is given in figure 4 for a hemisphere-cylinder at  
M, = 7.7. Although the second-order curve lies closer to the experimental points 
over the entire body length, third-order theory yields a more nearly parallel 
curve. 

Differentiation of the third-order solution to (7) results in U(t;  E )  = dR(t; E)/dt .  
Substitution of this expression into ( 5 )  evaluated at  2 = 0 and use of the analogy 
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equalities results in the following third-order expression for surface-pressure 
distribution 

Experiment (Lees & Kubota 1957) 3 -  

Secondader theory ( Y =1.4) 

Third-order theory (7=1.4) z 2 -  
a; 

0 1 2 3 4 5 6 

zld 

FIGURE 4. Shook shape about a hemisphere-aylinder; M ,  = 7.7. 

Third-order theory ( Y = 1.4) 

- 
- 

I 10-2 - e 
Qi 
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FIGURE 5. Surface preesure distribution on a hemisphere-cylinder; M ,  = 7.7. 
0 Experiment (Lees & Kubota 1957). 

The same comments regarding the nose-drag coefficient in (14) apply to (17) 
and the corresponding second-order expression for surface pressure distribution 
reported in Lees & Kubota (1967). 

Comparisons of the results obtained using two and three terms of (17) with 
experimental data at M, = 7.7 (Lees & Kubota 1967) and with a numerical 
solution at H, = 17-98 (Feldman 1969) are given in figures 6 and 6. Note 
that the correction to the second-order curve increases with increasing zld. 
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The significant contribution of third-order theory in both cases is, as with shock 
shape, the more accurate prediction of the slope of the pressure-distribution 
curve rather than correction of the value of the pressure at a given z/d. Indeed, 
depending on the z/d under consideration, third-order theory may be either more 
or less accurate than second-order theory in predicting the value of the pressure. 

Characteristics (Feldman 1959) 

Second-order theory ( y  = 1.4) 

FIQUR.E 6. Surface pressure distribution on a hemisphere-cylinder; M ,  = 17.98. 

Hence, since the predicted shoulder pressure is incorrect and changes very little 
between second- and third-order theories, application of one of the curve-shifting 
schemes to correct this deficiency (Casaccio 1959) will result in a more accurate 
pressure-distribution prediction by third-order theory than by second-order 
theory for the entire lengths of the bodies considered. 

We might again point out that, due to the large entropy gradient in the vicinity 
of the body, the blast-wave analogy is not valid in this region. The pressure 
distribution obtained by the analogy actually applies on a body derived by 
taking the entropy layer into account (Sychev 1960). This fact accounts for 
some of the discrepancy between experimental or exact numerical results and 
blast wave theory. 
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